报告人:杨波(香港理工大学 助理教授)
时间:2024年12月18日(周三) 14:00-15:00
地点:测绘馆206报告厅
报告简介:
A long-standing goal in machine intelligence is to build systems that are able to infer the underlying 3D scene semantics as well as understand its physical information. This is a fundamental necessity for spatial intelligence, embodied AI, and robotics. In this talk, I will first present our recent work on 3D physics learning from dynamic videos. After that, I will present our latest work on 3D semantics learning from point clouds. At last, the key challenges and possible research directions will be discussed.
报告人简介:
杨波,现为香港理工大学计算机系助理教授,vLAR研究组负责人。2020年9月获牛津大学计算机博士学位。主要研究方向包括:三维视觉、机器学习、机器人等,专注于让智能机器真正理解和重建复杂三维场景,从而实现机器智能决策并与环境自主交互。 其诸多研究成果发表于TPAMI、IJCV、NeurIPS、ICLR、ICML、CVPR、ICCV、ECCV、ICRA、IROS等国际期刊和会议。多个研究工作被国内外知名行业媒体报道,在学术界和工业界有广泛影响。入选2024年度全球前2%顶尖科学家榜单 (World's Top 2% Scientists List by Stanford & Elsevier)。